Limits of control for quantum systems: kinematical bounds on the optimization of observables and the question of dynamical realizability
نویسندگان
چکیده
In this paper we investigate the limits of control for mixed-state quantum systems. The constraint of unitary evolution for non-dissipative quantum systems imposes kinematical bounds on the optimization of arbitrary observables. We summarize our previous results on kinematical bounds and show that these bounds are dynamically realizable for completely controllable systems. Moreover, we establish improved bounds for certain partially controllable systems. Finally, the question of dynamical realizability of the bounds for arbitary partially controllable systems is shown to depend on the accessible sets of the associated control system on the unitary group U(N) and the results of a few control computations are discussed briefly.
منابع مشابه
Complete controllability of finite-level quantum systems
Complete controllability is a fundamental issue in the field of control of quantum systems, not least because of its implications for dynamical realizability of the kinematical bounds on the optimization of observables. In this paper we investigate the question of complete controllability for finite-level quantum systems subject to a single control field, for which the interaction is of dipole ...
متن کاملDesigning a quantum genetic controller for tracking the path of quantum systems
Based on learning control methods and computational intelligence, control of quantum systems is an attractive field of study in control engineering. What is important is to establish control approach ensuring that the control process converges to achieve a given control objective and at the same time it is simple and clear. In this paper, a learning control method based on genetic quantum contr...
متن کاملIndividual ergodic theorem for intuitionistic fuzzy observables using intuitionistic fuzzy state
The classical ergodic theory hasbeen built on σ-algebras. Later the Individual ergodictheorem was studied on more general structures like MV-algebrasand quantum structures. The aim of this paper is to formulate theIndividual ergodic theorem for intuitionistic fuzzy observablesusing m-almost everywhere convergence, where m...
متن کاملDynamical Lie group action on kinematical equivalence classes and criteria for reachability of states for quantum systems
The question of dynamical equivalence of kinematically equivalent quantum states is addressed by studying the action of the dynamical Lie group of the system on the kinematical equivalence classes of density matrices. It is shown that the dynamical Lie group of a pure-state controllable system, which is not density matrix controllable, acts transitively only on certain types of mixed quantum st...
متن کاملPROJECTED DYNAMICAL SYSTEMS AND OPTIMIZATION PROBLEMS
We establish a relationship between general constrained pseudoconvex optimization problems and globally projected dynamical systems. A corresponding novel neural network model, which is globally convergent and stable in the sense of Lyapunov, is proposed. Both theoretical and numerical approaches are considered. Numerical simulations for three constrained nonlinear optimization problems a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005